

Industrie 4.0 Gesundheit und Leistung in hybriden Systemen

Vortrag auf der 4. Fachtagung Arbeitsplanung und Prävention: Leistung und Gesundheit Detlef Gerst, Vorstand, FB Arbeitsgestaltung und Qualifizierungspolitik

Inhalt

- 1. Vision und Realität einer Industrie 4.0
- 2. Arbeit im Übergang zu Industrie 4.0
- 3. Arbeit im hybriden System
- 4. Fazit

| Vorstand

Von der ersten zur vierten industriellen Revolution

3. Industrielle Revolution durch Einsatz von Elektronik und IT zur weiteren Automatisierung der Produktion

4. Industrielle Revolution auf der Basis von Cyber-Physischen Systemen

Industrie 4.0

Industrie 3.0

Industrie 2.0

Industrie 1.0

1. Industrielle Revolution durch Einführung mechanischer Produktionsanlagen mit Hilfe von Wasser- und Dampfkraft

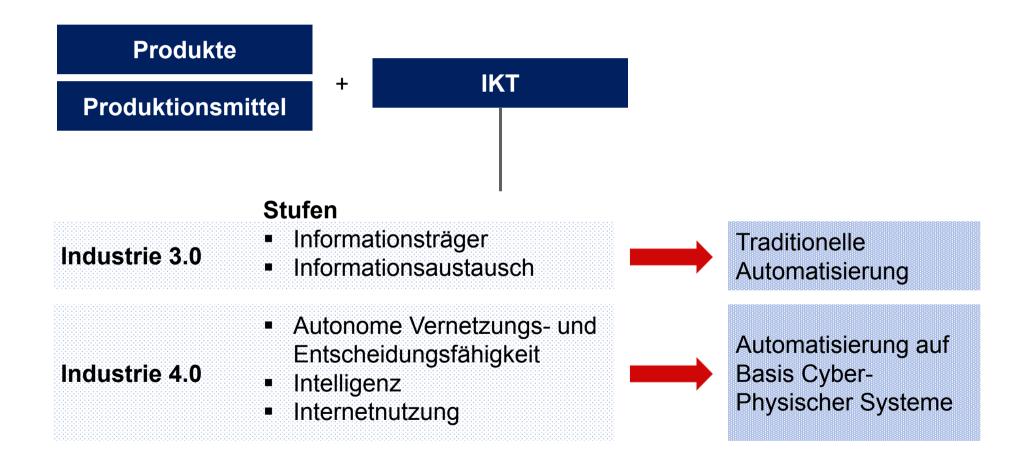
Beginn 20. Jhdt. Beginn 70er Jahre 20. Jhdt.

Heute

Quelle: DFKI/Bauer IAO

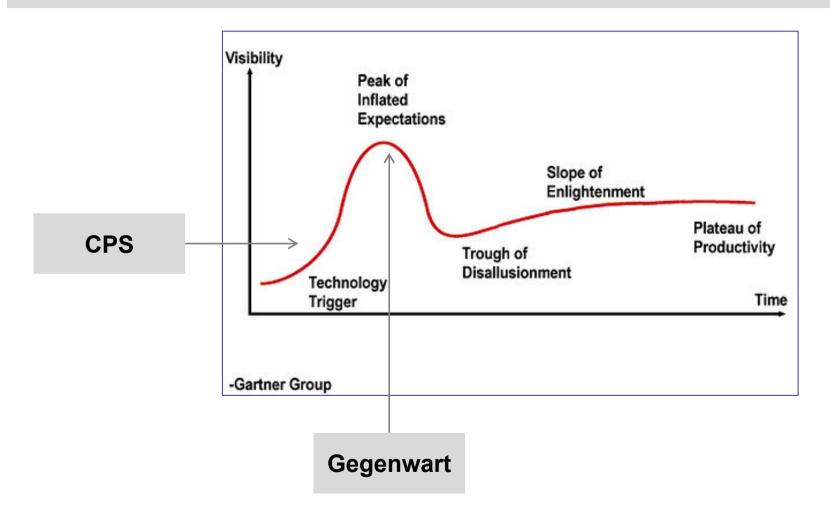
18. Jhdt.

Detlef Gerst


Ende

Ressort Arbeitsgestaltung und Gesundheitsschutz

Grad der Komplexität


Im Zentrum der Vision: Prozesssteuerung durch Cyber-Physical-Systems (CPS)

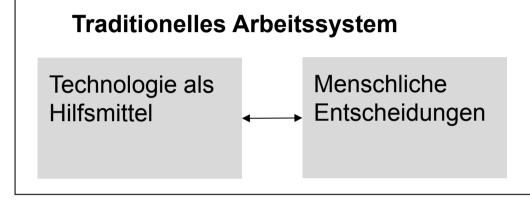


Technology Hype Cycle

- Industrie 4.0 als diskursives Ereignis

Treibende Faktoren

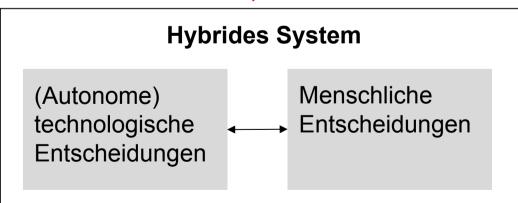
- Der Wunsch, sich als modernes Unternehmen präsentieren zu können.
- Die erforderliche Technologie ist weitgehend vorhanden oder in absehbarer
 Zeit entwickelbar.


Hemmende Faktoren

- Der konkrete Nutzen für einen industriellen Anwender ist heute kaum erkennbar.
- Probleme der Datensicherheit sind ungelöst und sie wachsen mit dem Grad der angestrebten Vernetzung.

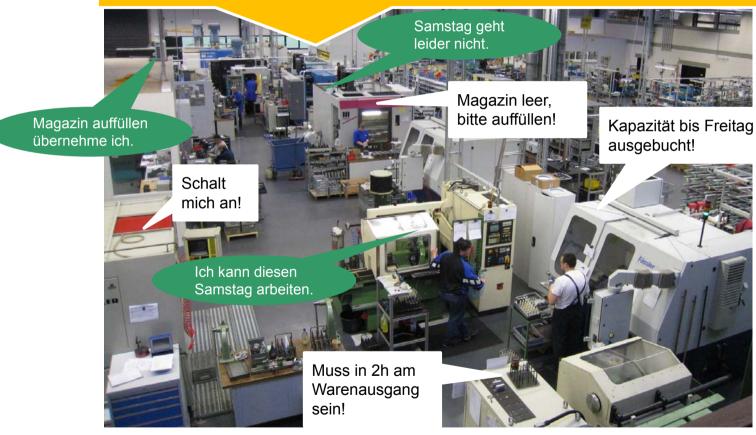
Vom traditionellen Arbeitssystem zum hybriden System

Industrie 3.0



Sonderformen

Technologisch vermittelte Kontrolle: Takt


Industrie 4.0

Alltag in der Smart Factory

Aufgabe an das Produktionssystem - Kundenauftrag: 500 Stück innerhalb einer Woche

Quelle: Bauer/

IAO

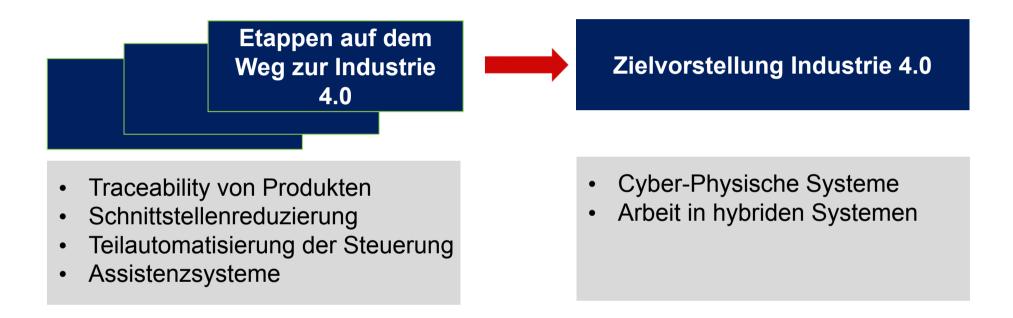
Szenarien der Arbeit in der Industrie 4.0

Geteilte Annahme

Weitreichende Veränderung von Arbeit

Szenarien

Entproblematisierte Arbeit


- Technologie entlastet den Menschen
- Mensch wird Herrscher über die Technik / Mensch als "Dirigent"
- Technologie löst Probleme des Gesundheitsschutzes

Hochgradig entfremdete Arbeit in der Cyber-Fabrik

- Mensch im Räderwerk Cyber-Physischer Systeme
- Anhängsel der Technologie
- Restrisiko

Arbeitspolitik für die Industrie 4.0

Struktur der Tätigkeiten bleibt weitgehend erhalten

Neue Struktur der Tätigkeiten

Inhalt

- 1. Vision und Realität einer Industrie 4.0
- 2. Arbeit im Übergang zu Industrie 4.0
- 3. Arbeit im hybriden System
- 4. Fazit

Technologisch unterstützte Produktionsarbeit

- Automationstechnik
- Mensch-Roboter-Kollaboration
- Augmented Reality (Lernunterstützung, Arbeitsanweisungen, Dabenbrillen)
- Koordinierung von Arbeitszeit über das Internet
- Plug & Produce Module
- Mobile Mehrmaschinenbedienung
- Fernsteuerung von Produktionsanlagen

Simulation Schnittstellenreduzierung

- EDV gestützte Simulation von Fertigungsprozessen
- Automatisiert erfasster Wertstrom
- Durchgängiges Engineering

Instandhaltung

- Instandhaltung über räumliche Distanz
- Datenbrillen, Diagnosehilfen
- Sensorik (Ermittlung von Material- und Produktzustand)

Produktionssteuerung

- Papierlose Logistik
- Traceability von Produkten und Bauteilen (Ziel: Information statt Bestand)
- RFID als reiner Datenträger
- Intelligente Behälter
- Digitales Produktgedächtnis
- Schwachstellenanalyse der Logistik

Mögliche Folgen für Arbeit und Beschäftigung

- Rascher Wandel der Qualifikationsanforderungen
- Ergonomische Verbesserungen durch Einsatz von Robotern: → Verstärkung menschlicher Fähigkeiten
- Wenig Abbau von Arbeitsplätzen durch Automatisierung
- Entstehung neuer Arbeitsplätze im Umfeld der Planung, Konfigurierung und Wartung der neuen Technologien
- Ausweitung von Einfacharbeit durch Einsatz von Assistenzsystemen
- Restrukturierung von Instandhaltungsaufgaben. Möglich wird ein Gefälle von Qualifikationsanforderungen
- Wachsende datentechnische Durchdringung: Erweiterte Möglichkeiten der Leistungs- und Verhaltenskontrolle
- Steigender Bedarf an zeitlicher Flexibilität. Möglicher Verlust an Zeitsouveränität und Regenerationsfähigkeit

- ...

Kollaborierende Roboter

Roboter werden aus ihren Käfigen geholt und kooperieren mit den Werkern

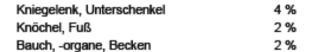
Die neue Generation von Leichtbaurobotern arbeitet als Assistenzsystem mit dem Beschäftigten "hautnah" zusammen.

Quelle: W. Wahlster, DFKI

Schutzeinrichtungen an kollaborierenden Robotern

Entwicklung eines Konzepts zur sicheren Personenerfassung als Schutzeinrichtung an kollaborierenden Robotern

> Dissertation zur Erlangung eines Doktorgrades


Fachbereich D – Architektur, Bauingenieurwesen, Maschinenbau, Sicherheitstechnik der

Bergischen Universität Wuppertal

- Abteilung Sicherheitstechnik -

vorgelegt von Björn Ostermann aus Köln

Wuppertal, im Juni 2014

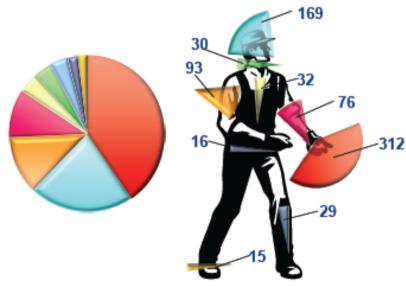


Abbildung 3: Tortendiagramm der Verletzungen verteilt auf ihre Orte Zahlenwerte: Gesamtzahl der Verletzungen 2005 – 2012 [138]

Inhalt

- 1. Vision und Realität einer Industrie 4.0
- 2. Arbeit im Übergang zu Industrie 4.0
- 3. Arbeit im hybriden System
- 4. Fazit

Mögliche Entlastungen durch die Arbeit in hybriden Systemen

- Weniger Routineaufgaben
 - Automatisierter Informationsfluss Systementscheidungen als technologische Dienstleistung
- Erweiterte **Handlungsspielräume** (Bsp.: Diagnosemöglichkeiten eines Instandhalters, Vernetzung von Instandhaltern)
- Bessere Work-Life-Balance durch flexible Arbeitsorganisation
- Vorteile für gering qualifiziertes Personal
 - Erleichtertes Anlernen (→ Assistenzsysteme)
 - Gehaltvollere Arbeit durch erforderliche IT Kompetenz

Mögliche Belastungen durch die Arbeit in hybriden Systemen

Kognitive Überforderung

Komplexität und Geschwindigkeit der Prozesse einer Systementscheidung, Ausbreitungsgeschwindigkeit von technologischen Fehlentscheidungen

- Verlust an Steuerungskompetenz durch Verlust an Erfahrungswissen (→Ironie der Automatisierung, automation bias, complacency)
- Verantwortungszuschreibung trotz eingeschränkter Steuerungsfähigkeit
- Verlust an Zeitsouveränität: Die Technik bestimmt die Flexibilität.
- Entfremdete Arbeit: Mensch als Anhängsel autonomer Entscheidungen technologischer Systeme
- Abnahme persönlicher Nähe und Kontakthäufigkeit
- Zunehmende zwischenbetriebliche Arbeitsteilung: Eingeschränkte Spielräume für Zeitsouveränität
- Transparenter Mensch als Teil des Informationsflusses

Inhalt

- 1. Vision und Realität einer Industrie 4.0
- 2. Arbeit im Übergang zu Industrie 4.0
- 3. Arbeit im hybriden System
- 4. Fazit

Fazit

- Ein Teil der Debatte um die Industrie 4.0 z\u00e4hlt gegenw\u00e4rtig zum Genre des Science Fiction.
- Eindeutige Trends der Entwicklung in Richtung Industrie 4.0 sind gegenwärtig nicht zu erkennen.
- Real gibt es eine Beschleunigung von technologischen Entwicklungen der Industrie 3.0. Diese gelten als Etappen zur Industrie 4.0. Damit verbunden sind weitreichende Veränderungen von Arbeit.
- Aufgrund der Vielfalt dieser Technologien ist es nicht möglich, verallgemeinerbare Aussagen zu einer Arbeitspolitik für die Industrie 4.0 zu formulieren.
- Es ist erforderlich, die neuen Technologie im Hinblick ihre Folgen für die betroffenen Beschäftigtengruppen zu untersuchen.

Kontakt

Dr. Detlef Gerst

IG Metall, Vorstand
FB Arbeitsgestaltung und Qualifizierungspolitik
Ressort Arbeitsgestaltung und Gesundheitsschutz

Wilhelm-Leuschner-Str.79 60519 Frankfurt am Main

detlef.gerst@igmetall.de

069-6693-2352